Ecohydrological responses to multifactor global change in a tallgrass prairie: A modeling analysis

نویسندگان

  • Jesse Eugene Bell
  • Ensheng Weng
  • Yiqi Luo
چکیده

[1] Relative impacts of multiple global change factors on ecohydrological processes in terrestrial ecosystems have not been carefully studied. In this study, we used a terrestrial ecosystem (TECO) model to examine effects of three global change factors (i.e., climate warming, elevated CO2, and altered precipitation) individually and in combination on runoff, evaporation, transpiration, rooting zone soil moisture content, water use efficiency (WUE), and rain use efficiency (RUE) in a North American tallgrass prairie. We conducted a total of 200 different scenarios with gradual changes of the three factors for 100 years. Our modeling results show strong responses of runoff, evaporation, transpiration, and rooting zone soil moisture to changes in temperature and precipitation, while effects of CO2 changes were relatively minor. For example, runoff decreased by 50% with a 10°C increase in temperature and increased by 250% with doubled precipitation. Ecosystem‐level RUE increased with CO2, decreased with precipitation, and optimized at 4–6°C of warming. In contrast, plant‐level WUE was highest at doubled CO2, doubled precipitation, and ambient temperature. The different response patterns of RUE and WUE signify that processes at different scales responded uniquely to climate change. Combinations of temperature, CO2, and precipitation anomalies interactively affected response magnitude and/or patterns of ecohydrological processes. Our results suggest that ecohydrological processes were considerably affected by global change factors and then likely regulate other ecosystem processes, such as carbon and nitrogen cycling. In particular, substantial changes in runoff to different climate change scenarios could have policy implications because it is a major component to replenishing freshwater. These modeling results should be tested by and could influence design of field experiments on ecohydrological processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canopy Interception for a Tallgrass Prairie under Juniper Encroachment

Rainfall partitioning and redistribution by canopies are important ecohydrological processes underlying ecosystem dynamics. We quantified and contrasted spatial and temporal variations of rainfall redistribution for a juniper (Juniperus virginiana, redcedar) woodland and a tallgrass prairie in the south-central Great Plains, USA. Our results showed that redcedar trees had high canopy storage ca...

متن کامل

Changes in soil water dynamics due to variation in precipitation and temperature: An ecohydrological analysis in a tallgrass prairie

[1] There is considerable evidence that future global climate change will increase temperature and alter precipitation regime. To better understand how these factors will influence soil water dynamics, it is imperative to use multifactorial experiments. A 1 year “pulse” experiment, with 4°C warming and a doubling in precipitation, was performed to evaluate the changes in soil moisture dynamics....

متن کامل

Sentinel nematodes of land-use change and restoration in tallgrass prairie.

Changes in land use and the associated changes in land cover are recognized as the most important component of human-induced global change. Much attention has been focused on deforestation, but grasslands are among the most endangered ecosystems on Earth. The North American tallgrass prairie is a dramatic example, exhibiting a greater than 95% decline in historical area. Renewed interest in pra...

متن کامل

Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to longterm warming and clipping in a tallgrass prairie

The dynamics of belowground net primary productivity (BNPP) is of fundamental importance in understanding carbon (C) allocation and storage in grasslands. However, our knowledge of the interannual variability in response of BNPP to ongoing global warming is limited. In this study, we explored temporal responses of BNPP and net primary productivity (NPP) partitioning to warming and clipping in a...

متن کامل

Altered rainfall patterns increase forb abundance and richness in native tallgrass prairie

Models predict that precipitation variability will increase with climate change. We used a 15-year precipitation manipulation experiment to determine if altering the timing and amount of growing season rainfall will impact plant community structure in annually burned, native tallgrass prairie. The altered precipitation treatment maintained the same total growing season precipitation as the ambi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010